metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetrakis(2-aminopyrazine- κN^4)dichloridocobalt(II)

Wei Kang,^a Li-Hua Huo,^a Shan Gao^a and Seik Weng Ng^{b*}

^aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 27 October 2009; accepted 29 October 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.025; wR factor = 0.074; data-to-parameter ratio = 16.3.

The Co^{II} atom in the title complex, $[CoCl_2(C_4H_5N_3)_4]$, exists in an all-*trans* Cl₂N₄Co octahedral geometry. The Co^{II} atom lies on a special position of 2 site symmetry. Adjacent molecules are linked by N-H···N and N-H···Cl hydrogen bonds into a three-dimensional network.

Related literature

For the triclinic modification, see: Csöregh et al. (2000).

Experimental

Crystal data

 $\begin{bmatrix} \text{CoCl}_2(\text{C}_4\text{H}_5\text{N}_3)_4 \end{bmatrix} \\ M_r = 510.27 \\ \text{Orthorhombic, } Pccn \\ a = 7.6347 \text{ (2) Å} \\ b = 15.7341 \text{ (4) Å} \\ c = 18.6074 \text{ (4) Å} \\ \end{bmatrix}$

 $V = 2235.22 (9) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 1.04 \text{ mm}^{-1}$ T = 293 K $0.30 \times 0.20 \times 0.15 \text{ mm}$

Data collection

```
Rigaku R-AXIS RAPID IP
diffractometer
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
T_{min} = 0.746, T_{max} = 0.860
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.074$ S = 1.062553 reflections 157 parameters 4 restraints 20053 measured reflections 2553 independent reflections 2234 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.024$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$

Table 1

Selected bond lengths (Å).

Co1-N1	2.2068 (11)	Co1-Cl1	2.4206 (4)
Co1-N4	2.1941 (11)		

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N3-H1···Cl1 ⁱ	0.85(1)	2.36 (1)	3.209 (2)	175 (2)
$N3-H2 \cdot \cdot \cdot N5^{ii}$	0.86(1)	2.43 (2)	3.134 (2)	140(2)
N6-H3···Cl1 ⁱⁱⁱ	0.85 (1)	2.42 (1)	3.265 (1)	171 (2)
$N6-H4\cdots N2^{iv}$	0.86 (1)	2.33 (2)	3.045 (2)	142 (2)
Symmetry codes: (i)	x - 1, y, z; (ii) x	$z - 1, -y + \frac{1}{2}, z - \frac{1}{2}$	$-\frac{1}{2}$; (iii) $-x + 2, y$	$+\frac{1}{2}, -z +\frac{1}{2};$ (iv)

Symmetry codes: (1) x - 1, y, z; (1) x - 1, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (11) -x + 2, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (1v) $x + \frac{1}{2}$, $y + \frac{1}{2}$, -z.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalClear* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2009).

We thank the Natural Science Foundation of Heilongjiang Province (No. B200501), Heilongjiang University, China, and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2656).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Csöregh, I., Kennessey, G., Wadsten, T., Liptay, G. & Carson, B. R. (2000). Z. Kristallogr. 215, 547–552.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2009). publCIF. In preparation.

Acta Cryst. (2009). E65, m1502 [doi:10.1107/S1600536809045309]

Tetrakis(2-aminopyrazine- κN^4)dichloridocobalt(II)

W. Kang, L.-H. Huo, S. Gao and S. W. Ng

Experimental

Cobalt(II) chloride hexahydrate (0.48 g, 2 mmol) and 2-aminopyrazine (0.19 g, 2 mmol) were dissolved in a small volume of water. Red crystals of the adduct separated from the filtered solution after several days. CH&N elemental analysis. Calc. for $C_{16}H_{20}Cl_2N_{12}Co$: C 37.66, H 3.95, N 32.94%; found: C 37.63, H 3.89, N 32.97%.

Refinement

Amino-H atoms were located in a difference Fourier map and refined isotropically with a distance restraint of N–H = 0.86 ± 0.01 Å. Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 Å) and were included in the refinement in the riding model approximation with U_{iso}(H) set to $1.2U_{eq}(C)$.

Figures

Rigaku RAXIS-RAPID IP

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $CoCl_2(C_2H_5N_3)_4$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Tetrakis(2-aminopyrazine- κN^4)dichloridocobalt(II)

Crystal data	
$[CoCl_2(C_4H_5N_3)_4]$	$F_{000} = 1044$
$M_r = 510.27$	$D_{\rm x} = 1.516 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pccn	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ab 2ac	Cell parameters from 15790 reflections
a = 7.6347 (2) Å	$\theta = 2.3 - 27.5^{\circ}$
b = 15.7341 (4) Å	$\mu = 1.04 \text{ mm}^{-1}$
c = 18.6074 (4) Å	T = 293 K
$V = 2235.22 (9) \text{ Å}^3$	Block, red
Z = 4	$0.30\times0.20\times0.15~mm$
Data collection	

2553 independent reflections

diffractometer	
Radiation source: fine-focus sealed tube	2234 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.024$
T = 293 K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 3.2^{\circ}$
Absorption correction: Multi-scan (ABSCOR; Higashi, 1995)	$h = -9 \rightarrow 9$
$T_{\min} = 0.746, T_{\max} = 0.860$	$k = -20 \rightarrow 20$
20053 measured reflections	$l = -24 \rightarrow 24$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.025$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.074$	$w = 1/[\sigma^2(F_o^2) + (0.0439P)^2 + 0.4514P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\rm max} = 0.001$
2553 reflections	$\Delta \rho_{max} = 0.29 \text{ e} \text{ Å}^{-3}$
157 parameters	$\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$
4 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

					2
Fractional atomic	coordinates and	d isotropic or	eauivalent isotropic	displacement parameters (A	$Å^2$)
1 . dettondt dtontte	eoor annes ann	a ison opie of	equiverent ison opre		- /

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Co1	0.7500	0.2500	0.103443 (12)	0.02794 (9)
Cl1	0.98632 (5)	0.14744 (2)	0.103952 (17)	0.03970 (11)
N1	0.61989 (16)	0.17473 (8)	0.01880 (6)	0.0348 (3)
N2	0.46194 (19)	0.08976 (11)	-0.09614 (7)	0.0553 (4)
N3	0.1968 (2)	0.09877 (14)	-0.03954 (8)	0.0686 (5)
N4	0.88907 (16)	0.31841 (7)	0.18890 (6)	0.0339 (3)
N5	1.03169 (17)	0.40550 (8)	0.30631 (6)	0.0387 (3)
N6	0.9535 (2)	0.53209 (8)	0.25231 (7)	0.0527 (4)
C1	0.45050 (19)	0.15892 (9)	0.01846 (7)	0.0357 (3)
H1A	0.3823	0.1771	0.0569	0.043*
C2	0.3693 (2)	0.11475 (10)	-0.03920 (7)	0.0413 (3)
C3	0.6338 (2)	0.10573 (14)	-0.09351 (9)	0.0625 (6)
H3A	0.7027	0.0878	-0.1318	0.075*
C4	0.7141 (2)	0.14683 (13)	-0.03790 (9)	0.0509 (4)
H4A	0.8345	0.1557	-0.0391	0.061*
C5	0.88843 (19)	0.40188 (8)	0.19189 (6)	0.0319 (3)
H5	0.8395	0.4324	0.1541	0.038*
C6	0.96002 (18)	0.44673 (8)	0.25094 (7)	0.0325 (3)
C7	1.0327 (2)	0.32043 (10)	0.30155 (8)	0.0453 (4)

H7	1.0823	0.2896	0.3390	0.054*
C8	0.9645 (2)	0.27664 (10)	0.24459 (8)	0.0452 (4)
H8	0.9700	0.2176	0.2440	0.054*
H1	0.136 (3)	0.1094 (14)	-0.0022 (8)	0.078 (7)*
H2	0.155 (3)	0.0704 (11)	-0.0753 (8)	0.063 (6)*
H3	0.978 (3)	0.5580 (12)	0.2913 (7)	0.060 (6)*
H4	0.909 (2)	0.5583 (11)	0.2164 (8)	0.061 (6)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	0.03367 (16)	0.02901 (14)	0.02114 (14)	-0.00229 (9)	0.000	0.000
Cl1	0.0462 (2)	0.0432 (2)	0.02968 (18)	0.01013 (15)	0.00662 (13)	0.00476 (12)
N1	0.0337 (6)	0.0435 (6)	0.0271 (5)	-0.0030 (5)	0.0015 (5)	-0.0079 (5)
N2	0.0407 (8)	0.0851 (11)	0.0401 (7)	-0.0055 (7)	0.0052 (6)	-0.0322 (7)
N3	0.0366 (8)	0.1287 (16)	0.0407 (8)	-0.0134 (9)	0.0027 (6)	-0.0368 (9)
N4	0.0428 (7)	0.0326 (5)	0.0262 (5)	-0.0011 (5)	-0.0058 (5)	0.0003 (4)
N5	0.0447 (7)	0.0433 (6)	0.0281 (5)	-0.0005 (5)	-0.0095 (5)	-0.0004 (5)
N6	0.0912 (12)	0.0339 (6)	0.0331 (6)	-0.0092 (7)	-0.0211 (7)	0.0002 (5)
C1	0.0359 (7)	0.0464 (7)	0.0248 (6)	0.0013 (6)	0.0028 (5)	-0.0084 (6)
C2	0.0352 (8)	0.0588 (9)	0.0300 (6)	-0.0012 (7)	0.0005 (6)	-0.0124 (6)
C3	0.0416 (9)	0.1031 (16)	0.0429 (9)	-0.0042 (10)	0.0106 (7)	-0.0368 (9)
C4	0.0340 (8)	0.0789 (12)	0.0398 (8)	-0.0060 (7)	0.0075 (6)	-0.0206 (8)
C5	0.0399 (7)	0.0323 (6)	0.0236 (6)	-0.0039 (5)	-0.0055 (5)	0.0036 (5)
C6	0.0376 (7)	0.0349 (6)	0.0251 (6)	-0.0057 (5)	-0.0034 (5)	0.0008 (5)
C7	0.0582 (10)	0.0450 (8)	0.0326 (7)	0.0103 (7)	-0.0151 (7)	0.0028 (6)
C8	0.0650 (11)	0.0335 (7)	0.0371 (7)	0.0090 (7)	-0.0136 (7)	0.0015 (6)

Geometric parameters (Å, °)

Co1—N1 ⁱ	2.2068 (11)	N5—C6	1.3348 (18)
Co1—N1	2.2068 (11)	N5—C7	1.341 (2)
Co1—N4	2.1941 (11)	N6—C6	1.3441 (18)
Co1—N4 ⁱ	2.1941 (11)	N6—H3	0.852 (9)
Co1—Cl1 ⁱ	2.4206 (4)	N6—H4	0.856 (9)
Co1—Cl1	2.4206 (4)	C1—C2	1.4207 (19)
N1—C1	1.3170 (19)	C1—H1A	0.9300
N1—C4	1.3501 (19)	C3—C4	1.366 (2)
N2—C2	1.3332 (19)	С3—НЗА	0.9300
N2—C3	1.337 (2)	C4—H4A	0.9300
N3—C2	1.341 (2)	C5—C6	1.4157 (18)
N3—H1	0.853 (9)	С5—Н5	0.9300
N3—H2	0.864 (9)	С7—С8	1.367 (2)
N4—C5	1.3145 (17)	С7—Н7	0.9300
N4—C8	1.3556 (18)	C8—H8	0.9300
N4—Co1—N4 ⁱ	87.12 (6)	C6—N6—H4	118.8 (14)
N4—Co1—N1 ⁱ	92.07 (4)	H3—N6—H4	121 (2)

N4 ⁱ —Co1—N1 ⁱ	176.67 (4)	N1—C1—C2	121.63 (13)
N4—Co1—N1	176.67 (4)	N1—C1—H1A	119.2
N4 ⁱ —Co1—N1	92.07 (4)	C2—C1—H1A	119.2
N1 ⁱ —Co1—N1	88.93 (6)	N2-C2-N3	117.51 (14)
N4—Co1—Cl1 ⁱ	91.77 (3)	N2—C2—C1	120.88 (15)
N4 ⁱ —Co1—Cl1 ⁱ	87.91 (3)	N3—C2—C1	121.59 (13)
N1 ⁱ —Co1—Cl1 ⁱ	88.89 (3)	N2—C3—C4	123.88 (15)
N1—Co1—Cl1 ⁱ	91.43 (3)	N2—C3—H3A	118.1
N4—Co1—Cl1	87.91 (3)	C4—C3—H3A	118.1
N4 ⁱ —Co1—Cl1	91.77 (3)	N1—C4—C3	120.47 (15)
N1 ⁱ —Co1—Cl1	91.43 (3)	N1—C4—H4A	119.8
N1—Co1—Cl1	88.89 (3)	C3—C4—H4A	119.8
Cl1 ⁱ —Co1—Cl1	179.552 (18)	N4—C5—C6	121.97 (12)
C1—N1—C4	117.25 (12)	N4—C5—H5	119.0
C1—N1—Co1	123.15 (9)	С6—С5—Н5	119.0
C4—N1—Co1	119.50 (10)	N5—C6—N6	119.10 (12)
C2—N2—C3	115.85 (13)	N5—C6—C5	121.00 (12)
C2—N3—H1	119.6 (16)	N6—C6—C5	119.89 (12)
C2—N3—H2	117.9 (14)	N5—C7—C8	123.50 (13)
H1—N3—H2	122 (2)	N5—C7—H7	118.2
C5—N4—C8	116.97 (12)	С8—С7—Н7	118.2
C5—N4—Co1	121.27 (9)	N4—C8—C7	120.67 (14)
C8—N4—Co1	121.45 (10)	N4—C8—H8	119.7
C6—N5—C7	115.87 (12)	С7—С8—Н8	119.7
C6—N6—H3	119.0 (14)		
N4 ⁱ —Co1—N1—C1	45.73 (12)	C3—N2—C2—N3	-179.1 (2)
N1 ⁱ —Co1—N1—C1	-131.09 (13)	C3—N2—C2—C1	2.7 (3)
Cl1 ⁱ —Co1—N1—C1	-42.23 (11)	N1—C1—C2—N2	-1.9 (2)
Cl1—Co1—N1—C1	137.45 (11)	N1—C1—C2—N3	-179.93 (17)
N4 ⁱ —Co1—N1—C4	-138.03 (13)	C2—N2—C3—C4	-1.6 (3)
N1 ⁱ —Co1—N1—C4	45.15 (12)	C1—N1—C4—C3	1.4 (3)
Cl1 ⁱ —Co1—N1—C4	134.01 (13)	Co1—N1—C4—C3	-175.03 (16)
Cl1—Co1—N1—C4	-46.30 (13)	N2—C3—C4—N1	-0.5 (4)
N4 ⁱ —Co1—N4—C5	-124.52 (13)	C8—N4—C5—C6	-1.1 (2)
N1 ⁱ —Co1—N4—C5	52.25 (11)	Co1—N4—C5—C6	172.58 (10)
Cl1 ⁱ —Co1—N4—C5	-36.70 (11)	C7—N5—C6—N6	179.54 (15)
Cl1—Co1—N4—C5	143.61 (11)	C7—N5—C6—C5	0.7 (2)
N4 ⁱ —Co1—N4—C8	48.91 (11)	N4—C5—C6—N5	0.1 (2)
N1 ⁱ —Co1—N4—C8	-134.32 (13)	N4C5	-178.74 (15)
Cl1 ⁱ —Co1—N4—C8	136.73 (12)	C6—N5—C7—C8	-0.5 (3)
Cl1—Co1—N4—C8	-42.96 (12)	C5—N4—C8—C7	1.4 (2)
C4—N1—C1—C2	-0.3 (2)	Co1—N4—C8—C7	-172.29 (13)
Co1—N1—C1—C2	176.01 (11)	N5—C7—C8—N4	-0.6 (3)
Symmetry codes: (i) $-x+3/2$, $-y+1/2$, z.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H…A
N3—H1···Cl1 ⁱⁱ	0.85 (1)	2.36(1)	3.209 (2)	175 (2)
N3—H2···N5 ⁱⁱⁱ	0.86 (1)	2.43 (2)	3.134 (2)	140 (2)
N6—H3···Cl1 ^{iv}	0.85 (1)	2.42 (1)	3.265 (1)	171 (2)
$N6-H4\cdots N2^{v}$	0.86 (1)	2.33 (2)	3.045 (2)	142 (2)
Symmetry codes: (ii) <i>x</i> -1, <i>y</i> , <i>z</i> ; (iii) <i>x</i> -1, -	-y+1/2, $z-1/2$; (iv) $-x+2$, $y+2$	-1/2, $-z+1/2$; (v) $x+1$	/2, y+1/2, -z.	

